m*********a 发帖数: 2000 | 1 有n个bernoulli (0,1) 随机变量x_1,x_2,...,x_n
条件概率总是小于a
P[x_i==1 |x_1, ...,x_(i-1)] <= a. 这里a<1/4
given an integer m,
Can we show that
P(x_1+...+x_n >= m ) is always smaller than P(x'_1+x'_2+...+x'_n >=m )?
这里x'是独立的Bernoulli ranodm variables taking value '1' with probability a.
If true, how can we prove this? | D*******a 发帖数: 3688 | 2 条件概率总小于a==>非条件概率也必小于a
a.
【在 m*********a 的大作中提到】 : 有n个bernoulli (0,1) 随机变量x_1,x_2,...,x_n : 条件概率总是小于a : P[x_i==1 |x_1, ...,x_(i-1)] <= a. 这里a<1/4 : given an integer m, : Can we show that : P(x_1+...+x_n >= m ) is always smaller than P(x'_1+x'_2+...+x'_n >=m )? : 这里x'是独立的Bernoulli ranodm variables taking value '1' with probability a. : If true, how can we prove this?
| m*********a 发帖数: 2000 | 3 我们能得到什么?
【在 D*******a 的大作中提到】 : 条件概率总小于a==>非条件概率也必小于a : : a.
| m*********a 发帖数: 2000 | 4 帮忙看一下了
a.
【在 m*********a 的大作中提到】 : 有n个bernoulli (0,1) 随机变量x_1,x_2,...,x_n : 条件概率总是小于a : P[x_i==1 |x_1, ...,x_(i-1)] <= a. 这里a<1/4 : given an integer m, : Can we show that : P(x_1+...+x_n >= m ) is always smaller than P(x'_1+x'_2+...+x'_n >=m )? : 这里x'是独立的Bernoulli ranodm variables taking value '1' with probability a. : If true, how can we prove this?
|
|