由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
Statistics版 - model里有multicollinearity,该如何处理呢?
相关主题
One interview question:) Looking for helpOrder of Independent Variables in Linear Multiple Regression
在线求助 eliminated highly correlated variables.Linear Regression
请教一个correlation coefficient的test的问题有谁知道crossover design里面作linear mixed model如何计算coefficient of variation (CV)?
请问multi variate linear regression 选择risk factor 问题抓狂!为啥选出来的predictor都这么差
如何在应用model前把correlated的predictors去掉?logistic regression 问题
##面试过了,请教问题##一个关于multicollinearity的问题
用2SLS or Simultaneous Equations Model怎么做这个问题新鲜出炉的google面经!大家帮我看看答的怎样吧!
[合集] 请教个CORRELATION COEFFICIENT的问题GBM in R
相关话题的讨论汇总
话题: vif话题: variance话题: model
进入Statistics版参与讨论
1 (共1页)
h******e
发帖数: 1791
1
谢谢。
p******d
发帖数: 18
2
principle component
cluster, etc
Y***Y
发帖数: 180
3
PCA

【在 h******e 的大作中提到】
: 谢谢。
w**********y
发帖数: 1691
4
Always analyze data by graph, table or other statistical summary before
any modelling. Choose some potential available models based on the
experts’ experience and analysis.
Then Modelling by:
1. Ridge regression-biased estimator of beta (degree of biases is
controlled by a constant choosen by urself, and VIF(variance influence
factor) could helps you to choose this constant)
2. PCA (Principal component analysis) – create new variables that is
independent. But problem is how to explain the
w*****e
发帖数: 806
5
3x!! Really good post..

【在 w**********y 的大作中提到】
: Always analyze data by graph, table or other statistical summary before
: any modelling. Choose some potential available models based on the
: experts’ experience and analysis.
: Then Modelling by:
: 1. Ridge regression-biased estimator of beta (degree of biases is
: controlled by a constant choosen by urself, and VIF(variance influence
: factor) could helps you to choose this constant)
: 2. PCA (Principal component analysis) – create new variables that is
: independent. But problem is how to explain the

t********y
发帖数: 469
6
one can check for multicollinearity by means of the correlation matrix. In
such a matrix when the correlation coefficient between two explanatory
variables is above 0.8 one needs to be aware of possible collinearity. If
the correlation coefficient is above 0.95 the problem is really serious.
A diagnostic approach to check for multicollinearity after performing
regression analysis is to display the Variance Inflation factor (VIF).
VIF is a measure of how much the variance of an estimated regressi
t********y
发帖数: 469
7
Checking for Multicollinearity Using SAS
www-personal.umich.edu/~kwelch/finan/day3_finan_collin.doc
w*****e
发帖数: 806
8
3x a lot. 这个prof好多sas在各个方面的应用啊。
看过doc文件之后觉得讲的很有条理。

【在 t********y 的大作中提到】
: Checking for Multicollinearity Using SAS
: www-personal.umich.edu/~kwelch/finan/day3_finan_collin.doc

s******1
发帖数: 26
9
其实PCA 也不一定好,需要对新的变量有比较合理的解释。Ridge也要看。学回归的时
候好像也要看是否是 model based collinearity or variable based collinearity.
还有可以作中心差。总之 google也可以goo很多出来的。好运了。
1 (共1页)
进入Statistics版参与讨论
相关主题
GBM in R如何在应用model前把correlated的predictors去掉?
网上看到一道题##面试过了,请教问题##
Is there any correlation between the two data set?用2SLS or Simultaneous Equations Model怎么做这个问题
请教确定weights 的方法[合集] 请教个CORRELATION COEFFICIENT的问题
One interview question:) Looking for helpOrder of Independent Variables in Linear Multiple Regression
在线求助 eliminated highly correlated variables.Linear Regression
请教一个correlation coefficient的test的问题有谁知道crossover design里面作linear mixed model如何计算coefficient of variation (CV)?
请问multi variate linear regression 选择risk factor 问题抓狂!为啥选出来的predictor都这么差
相关话题的讨论汇总
话题: vif话题: variance话题: model