由买买提看人间百态

boards

本页内容为未名空间相应帖子的节选和存档,一周内的贴子最多显示50字,超过一周显示500字 访问原贴
CS版 - 请教一道题目! (转载)
相关主题
问一个关于minimum spanning tree的问题some questions about the geometry
请教:K-Nearest neighbor search 有现成算法吗?[转载] 问个 pattern recognition 的人
python sklearn nearest neighbor user defined metric 我不行了,大虾帮忙
哪里有对range data 进行triangulation的软件请问这个graphic问题叫什么
计算几何现在在搞啥问个Matlab的问题 (转载)
有没有这样的算法请教MATLAB的一个命令
求算法:已知各个散点的浓度值,画平面上连续的浓度分布图请问什么是quotient graph?
无标题2D空间n个点, 连成一个spiral
相关话题的讨论汇总
话题: neighbor话题: nearest话题: kd话题: delaunay
进入CS版参与讨论
1 (共1页)
x**********g
发帖数: 91
1
【 以下文字转载自 JobHunting 讨论区 】
发信人: xiabaitubing (大白兔), 信区: JobHunting
标 题: 请教一道题目!
发信站: BBS 未名空间站 (Fri May 14 13:48:23 2010, 美东)
谢谢!
在一个边长为1的正方形中,随机散落30个点,
每个点都有距离它最近的点,也就是neighbor,
求,这30个点中,哪个点与它的neighbor之间距离最远,哪个点于它的neighbor之间距
离最近,还
要算出30个点与neighbor之间距离的平均值。
不想计算出每个点与所有点之间的距离,不知道有没有更好的方法找每个点的neighbor。
w***n
发帖数: 1084
2
Just make a kd tree.
x**********g
发帖数: 91
3
谢谢大牛!
我搜了一下KD tree,wiki上说
As a general rule, if the dimensionality is k, then number of points in
the data, N, should be N >> 2k. Otherwise, when kd-trees are used with
high-dimensional data, most of the points in the tree will be evaluated
and the efficiency is no better than exhaustive search. and approximate
nearest-neighbour methods are used instead.
意思就是不适合于high dimension的情况?
那我这个2维的,还是可以的噢。

【在 w***n 的大作中提到】
: Just make a kd tree.
w***n
发帖数: 1084
4
Right. In 2D, you probably can just use a quad-tree, or a regular grid,
depending on how your points are distributed.
w***n
发帖数: 1084
5
Actually if just in 2D/3D, you probably can try a Delaunay triangulation too, and your nearest neighbor shouldn't be too far away from the neighborhood in the triangulation.
It is easy to prove that the nearest neighbor $B$ of $A$ should be in $A$'s neighborhood in the triangulation.
Because if it didn't, you can always find a triangle that is made of $A$ and its two neighbors containing $B$, which violates the Delaunay (voronoi) property.
l******e
发帖数: 470
6
你就 30个 点,直接算。。
有建kd树那个时间比这多的多的点都算完了
你要是3千3万个点再用其他数据结构吧。

neighbor。

【在 x**********g 的大作中提到】
: 谢谢大牛!
: 我搜了一下KD tree,wiki上说
: As a general rule, if the dimensionality is k, then number of points in
: the data, N, should be N >> 2k. Otherwise, when kd-trees are used with
: high-dimensional data, most of the points in the tree will be evaluated
: and the efficiency is no better than exhaustive search. and approximate
: nearest-neighbour methods are used instead.
: 意思就是不适合于high dimension的情况?
: 那我这个2维的,还是可以的噢。

1 (共1页)
进入CS版参与讨论
相关主题
2D空间n个点, 连成一个spiral计算几何现在在搞啥
算法问题有没有这样的算法
求助关于聚类问题求算法:已知各个散点的浓度值,画平面上连续的浓度分布图
请教一个算法问题的思路。无标题
问一个关于minimum spanning tree的问题some questions about the geometry
请教:K-Nearest neighbor search 有现成算法吗?[转载] 问个 pattern recognition 的人
python sklearn nearest neighbor user defined metric 我不行了,大虾帮忙
哪里有对range data 进行triangulation的软件请问这个graphic问题叫什么
相关话题的讨论汇总
话题: neighbor话题: nearest话题: kd话题: delaunay